ตารางธาตุและสมบัติของธาตุหมู่หลัก

วิวัฒนาการของการสร้างตารางธาตุ
เมื่อมีการค้นพบธาตุและศึกษาสมบัติของธาตุต่างๆเหล่านี้แล้ว นักวิทยาศาสตร์ได้หาความสัมพันธ์ระหว่างสมบัติต่างๆของธาตุและนำมาใช้จัดธาตุเป็นกลุ่มได้หลายแบบ ในปี พ.ศ. 2360 โยฮันน์ โวล์ฟกัง เดอเบอไรเนอร์ (Johann Wolfgang Dobereiner) เป็นนักเคมีคนแรกที่พยายามจัดธาตุเป็นกลุ่มๆละ 3 ธาตุตามสมบัติที่คล้ายคลึงกันเรียกว่า ชุดสาม (triads) โดยพบว่าธาตุกลางจะมีมวลอะตอมเป็นค่าเฉลี่ยของมวลอะตอมของอีกสองธาตุที่เหลือ แต่เมื่อนำหลักของชุดสามไปใช้กับธาตุกลุ่มอื่นที่มีสมบัติคล้ายกัน พบว่าค่ามวลอะตอมของธาตุกลางไม่เท่ากับค่าเฉลี่ยของมวลอะตอมของสองธาตุที่เหลือ หลักชุดสามของเดอเบอไรเนอร์จึงไม่เป็นที่ยอมรับในเวลาต่อมา
ในปีพ.ศ. 2407 จอห์น นิวแลนด์ (John Newlands) นักวิทยาศาสตร์ชาวอังกฤษได้เสนอกฎในการจัดธาตุเป็นหมวดหมู่ว่า ถ้าเรียงธาตุตามมวลอะตอมจากน้อยไปมาก พบว่าธาตุที่ 8 จะมีสมบัติเหมือนกับธาตุที่ 1 เสมอ (ไม่รวมธาตุไฮโดรเจนและแก๊สมีสกุล) เช่น เริ่มต้นเรียงโดยใช้ธาตุ Li เป็นธาตุที่ 1 ธาตุที่ 8 จะเป็น Na ซึ่งมีสมบัติคล้ายธาตุ Li ดังตัวอย่างการจัดต่อไปนี้ 
การจัดเรียงธาตุตามแนวคิดของนิวแลนด์ใช้ได้ถึงธาตุแคลเซียมเท่านั้นกฎนี้ไม่สามารถอธิบายได้ว่าเพราะเหตุใดมวลอะตอม
จึงเกี่ยวข้องกับสมบัติที่คล้ายคลึงกันของธาตุทำให้ไม่เป็นที่ยอมรับในเวลาต่อมา
ในปีพ.ศ. 2412 ยูลิอุส โลทาร์ ไมเออร์ นักวิทยาศาสตร์ชาวเยอรมันและดิมิทรี เมนเดเลเอฟ นักวิทยาศาสตร์ชาวรัสเซีย ได้ศึกษารายละเอียดของธาตุต่างๆมากขึ้นทำให้มีข้อสังเกตว่าถ้าเรียงธาตุตามมวลอะตอมจากน้อยไปมากจะพบว่าธาตุมีสมบัติคล้ายกันเป็นช่วงๆการที่ธาตุต่างๆมีสมบัติคล้ายกันเป็นช่วงเช่นนี้เมนเดเลเอฟตั้งเป็นกฎเรียกว่า กฎพิริออดิก (periodic law) และได้เสนอความคิดนี้ในปี พ.ศ. 2412  ก่อนที่ไมเออร์จะเผยแพร่ผลงานของเขาหนึ่งปีเพื่อเป็นการให้เกียรติแก่เมนเด เลเอฟ จึงเรียกตารางนี้ว่า ตารางพิริออดิกของเมนเดเลเอฟ ในปีต่อมาเมนเดเลเอฟได้ปรับปรุงตารางธาตุใหม่

อย่างไรก็ตามเมนเดเลเอฟไม่สามารถอธิบายได้ว่าเพราะเหตุใดจึงต้องจัดเรียงธาตุตามมวลอะตอม เนื่องจากสมัยนั้นนักวิทยาศาสตร์ยังศึกษาโครงสร้างของอะตอมและไอโซโทปได้ไม่ชัดเจน
นักวิทยาศาสตร์รุ่นต่อมาเกิดแนวความคิดว่าตำแหน่งของธาตุในตารางธาตุไม่น่าจะขึ้นอยู่กับมวลอะตอมของธาตุแต่น่าจะขึ้นอยู่กับสมบัติอื่นที่มีความสัมพันธ์กับมวลอะตอม 
ในปีพ.ศ. 2456 เฮนรี โมสลีย์  นักวิทยาศาสตร์ชาวอังกฤษ ได้เสนอให้จัดธาตุเรียงตามเลขอะตอม เนื่องจากสมบัติต่างๆ ของธาตุมีความสัมพันธ์กับประจุบวกในนิวเคลียสหรือเลขอะตอมมากกว่ามวลอะตอม ตารางธาตุในปัจจุบันจึงได้จัดเรียงธาตุตามเลขอะตอมจากน้อยไปมากซึ่งสอดคล้อง กับกฎพิริออดิกที่ได้กล่าวมาแล้ว
ตารางธาตุที่นิยมใช้ในปัจจุบันได้ปรับปรุงมาจากตารางธาตุของเมนเดเลเอฟแต่เรียงธาตุตามลำดับเลขอะตอมแทนการเรียงตามมวลอะตอม
ตารางธาตุในปัจจุบัน 
ตารางธาตุแบ่งธาตุในแนวตั้งเป็น 18 แถว โดยเรียกแถวในแนวตั้งว่า หมู่ และแบ่งธาตุในแนวนอนเป็น 7 แถว เรียกแถวในแนวนอนว่า คาบ ซึ่งแต่ละคาบจัดเรียงธาตุตามเลขอะตอมที่เพิ่มขึ้นตามลำดับ 

กลุ่มของธาตุในตารางธาตุ
การที่นักวิทยาศาสตร์จัดธาตุในตารางธาตุเป็นหมู่และคาบเพื่อให้ง่ายต่อการศึกษาสมบัติของธาตุต่างๆ ถ้าแบ่งกลุ่มธาตุตามสมบัติความเป็นโลหะจะแบ่งได้เป็น 3 กลุ่ม คือธาตุโลหะ เป็นธาตุที่นำไฟฟ้าและนำความร้อนได้ดี ธาตุกึ่งโลหะ เป็นธาตุนำไฟฟ้าได้ไม่ดีที่อุณหภูมิห้องแต่นำไฟฟ้าได้ดีขึ้นเมื่ออุณหภูมิสูงขึ้น และ ธาตุอโลหะ ซึ่งไม่นำไฟฟ้า ยกเว้นคาร์บอน (แกรไฟต์) และฟอสฟอรัสดำ ตำแหน่งของธาตุในตารางธาตุพบว่า ธาตุโลหะอยู่ทางด้านซ้ายมือของตารางธาตุ
ธาตุกึ่งโลหะอยู่บริเวณที่เป็นขั้นบันได และธาตุอโลหะอยู่ขวามือของตารางธาตุ ยกเว้นไฮโดรเจนอยู่ทางด้านซ้ายมือของตารางธาตุ 
ถ้าแบ่งกลุ่มธาตุในตารางธาตุโดยพิจารณาการจัดเรียงอิเล็กตรอนในออร์บิทัล s p d และ f ที่มีพลังงานสูงสุดและมีอิเล็กตรอนบรรจุอยู่ จะแบ่งธาตุออกเป็น 4 กลุ่มใหญ่คือ ธาตุกลุ่ม s ได้แก่ธาตุในหมู่ 1 และ 2 ธาตุกลุ่ม p ได้แก่ธาตุในหมู่ 13ถึง 18 ยกเว้น He ธาตุกลุ่ม d ได้แก่ ธาตุในหมู่ 3 ถึง 12 ส่วนธาตุในกลุ่ม f ได้แก่ กลุ่มธาตุที่อยู่ด้านล่างของตารางธาตุที่แยกมาจากหมู่ 3 คาบที่ 6 และ 7 ดังรูป
ตำแหน่งของธาตุตามระดับพลังงานย่อย 

ธาตุกลุ่ม s และกลุ่ม p เรียกรวมกันว่า ธาตุกลุ่ม A ซึ่งเป็นธาตุเรพรีเซนเททีฟ (representtative element) หรืออาจเรียกว่ากลุ่มธาตุหมู่หลัก (main group element) เมื่อพิจารณาการจัดเรียงอิเล็กตรอนของธาตุกลุ่ม A พบว่าธาตุในแนวตั้งที่อยู่ในกลุ่ม A จะมีเวเลนซ์อิเล็กตรอนเท่ากันและจำนวนเวเลนซ์อิเล็กตรอนจะตรงกับเลขหมู่ สำหรับธาตุตามแนวนอนที่อยู่ในคาบเดียวกัน พบว่ามีจำนวนระดับพลังงานเท่ากัน และจำนวนระดับพลังงานจะตรงกับเลขที่คาบ
ธาตุบางหมู่มีการกำหนดชื่อที่เป็นสากล เช่น
-ธาตุหมู่ IA เรียกว่า โลหะแอลคาไล (alkali metal) ได้แก่ Li , Na , K , Rb , Cs , Fr
-ธาตุหมู่ IIA เรียกว่า โลหะแอลคาไลน์เอิร์ท (alkaline earth) ได้แก่ Be Mg Ca Sr Ba Ra
-ธาตุหมู่ VIIA เรียกว่า ธาตุแฮโลเจน (halogen) ได้แก่ F Cl Br I At
-ธาตุหมู่ที่ VIIIA เรียกว่า แก๊สมีสกุล (Inert gas) ได้แก่ He Ne Ar Kr Xe Rn
ธาตุกลุ่ม d และ f เรียกรวมกันว่าธาตุกลุ่ม B หรือกลุ่มธาตุทรานซิชัน (transition element) ซึ่งแบ่งเป็น ธาตุทรานซิชันชั้นนอก (outer transition) ได้แก่ธาตุกลุ่ม d และธาตุทรานซิชันชั้นใน (inner transition) ได้แก่ธาตุกลุ่ม f โดยธาตุกลุ่ม f ยังแบ่งได้เป็น 2กลุ่มย่อย 
ประกอบด้วยแลนทานอยด์ และ แอกทินอยด์

ขนาดอะตอม
ตามแบบจำลองอะตอมแบบกลุ่มหมอก อิเล็กตรอนที่อยู่รอบนิวเคลียสจะเคลื่อนที่ตลอดเวลาด้วยความเร็วสูงและไม่สามารถบอกตำแหน่งที่แน่นอนรวมทั้งไม่สามารถกำหนดขอบเขตที่แน่นอนของอิเล็กตรอนได้ นอกจากนี้อะตอมโดยทั่วไปไม่อยู่เป็นอะตอมเดี่ยวแต่จะมีแรงยึดเหนี่ยวระหว่างอะตอมไว้ด้วยกัน จึงเป็นเรื่องยากที่จะวัดขนาดอะตอมที่อยู่ในภาวะอิสระหรือเป็นอะตอมเดี่ยว ในทางปฏิบัติจึงบอกขนาดอะตอมด้วย รัศมีอะตอม ซึ่งกำหนดให้มีค่าเท่ากับครึ่งหนึ่งของระยะระหว่างนิวเคลียสของอะตอมทั้งสองที่มีแรงยึดเหนี่ยวระหว่างอะตอมไว้ด้วยกันหรือที่อยู่ชิดกัน การศึกษารัศมีอะตอมของธาตุทำให้ทราบขนาดอะตอมของธาตุและสามารถเปรียบเทียบขนาดอะตอมของธาตุที่อยู่ในคาบเดียวกันหรือหมู่เดียวกันได้ ตัวอย่างรัศมีอะตอมของธาตุ ดังตาราง


รัศมีอะตอม (พิโกเมตร) ของธาตุบางชนิด

พิจารณาขนาดอะตอมของธาตุที่อยู่ในคาบเดียวกันพบว่า ขนาดอะตอมมีแนวโน้มลดลงเมื่อเลขอะตอมเพิ่มขึ้น อธิบายได้ว่า เนื่องจากธาตุในคาบเดียวกันมีเวเลนซ์อิเล็กตรอนอยู่ในระดับพลังงานเดียวกัน แต่มีจำนวนโปรตอนในนิวเคลียสแตกต่างกัน ธาตุที่มีจำนวนโปรตอนมากจะดึงดูดเวเลนซ์อิเล็กตรอนด้วยแรงที่มากกว่าธาตุที่มีจำนวนโปรตอนน้อย เวเลนซ์อิเล็กตรอนจึงเข้าใกล้นิวเคลียสได้มากกว่าทำให้อะตอมมีขนาดเล็กลง ส่วนธาตุในหมู่เดียวกัน เมื่อเลขอะตอมเพิ่มขึ้นจำนวนโปรตอนในนิวเคลียสและจำนวนระดับพลังงานที่มีอิเล็กตรอนเพิ่มขึ้นด้วย อิเล็กตรอนที่อยู่ชั้นในจึงเป็นคล้ายฉากกั้นแรงดึงดูดระหว่างโปรตอนในนิวเคลียสกับเวเลนซ์อิเล็กตรอน ทำให้แรงดึงดูดต่อเวเลนซ์อิเล็กตรอนมีน้อย เป็นผลให้ธาตุในหมู่เดียวกันมีขนาดอะตอมใหญ่ขึ้นตามเลขอะตอม 

ขนาดไอออน
อะตอมซึ่งมีจำนวนโปรตอนเท่ากับอิเล็กตรอน เมื่อรับอิเล็กตรอนเข้ามาหรือเสียอิเล็กตรอนออกไปจะกลายเป็นไอออน การบอกขนาดของไอออนทำได้เช่นเดียวกับการบอกขนาดอะตอม กล่าวคือจะบอกเป็นค่ารัศมีไอออน ซึ่งพิจารณาจากระยะระหว่างนิวเคลียสขนาไอออนคู่หนึ่งๆ ที่ยึดเหนี่ยวซึ่งกันและกันในโครงผลึก ตัวอย่าง


เมื่อโลหะทำปฏิกิริยากับอโลหะ อะตอมของโลหะจะเสียเวเลนซ์อิเล็กตรอนกลายเป็นไอออนบวก จำนวนอิเล็กตรอนในอะตอมจึงลดลง ทำให้แรงผลักระหว่างอิเล็กตรอนลดลงด้วย หรือกล่าวอีกนัยก็คือแรงดึงดูดระหว่างประจุในนิวเคลียสกับอิเล็กตรอนจะเพิ่มมากขึ้น ไอออนบวกจึงมีขนาดเล็กกว่าอะตอมเดิม ส่วนอะตอมของอโลหะนั้นส่วนใหญ่จะรับอิเล็กตรอนเพิ่มเข้ามาและเกิดเป็นไอออนลบ เนื่องจากมีการเพิ่มขึ้นของจำนวนอิเล็กตรอน ขอบเขตของกลุ่มหมอกอิเล็กตรอนจะขยายออกไปจากเดิม ไอออนลบจึงมีขนาดใหญ่กว่าอะตอมเดิม ตัวอย่างขนาดอะตอมและขนาดไอออนของธาตุ 
รัศมีอะตอมและรัศมีไอออน (พิโกเมตร)ของธาตุบางชนิด


เมื่อพิจารณาแนวโน้มของรัศมีอะตอมและรัศมีไอออนตามหมู่ ส่วนใหญ่มีแนวโน้มมีขนาดเพิ่มขึ้นจากบนลงล่างเช่นเดียวกับขนาดอะตอม รัศมีไอออนบวกจะมีค่าน้อยกว่ารัศมีอะตอม แต่รัศมีไอออนลบจะมีค่ามากกว่ารัศมีอะตอม 

พลังงานไอออไนเซชัน

พลังงานไอออไนเซชัน (IE) คือค่าพลังงาน ที่ใช้ในการดึงให้อิเล็กตรอนวงนอกสุด (เวเลนซ์อิเล็กตรอน)หลุดออกจากอะตอมหรือโมเลกุลที่อยู่ในสถานะก๊าซปริมาณพลังงานที่น้อยที่สุดที่สามารถทำให้อะตอมหรือโมเลกุลปลดปล่อยอิเล็กตรอน ค่าพลังงานไอออไนเซชันจะบ่งบอกว่าอะตอมหรือไอออนนั้นสามารถเสียอิเล็กตรอนได้ง่ายหรือยาก หรือในอีกมุมหนึ่งเป็นการบ่งบอกระดับพลังงานของอิเล็กตรอนวงนอกสุดของอะตอมหรือไอออนนั้นว่ามีความเสถียรมากเพียงใด โดยทั่วไปค่าพลังงานไอออไนเซชันจะมีค่าเพิ่มขึ้นเมื่อพยายามที่จะทำให้อิเล็กตรอนตัวต่อไปถูกปลดปล่อยออกมา เนื่องจากการผลักกันของประจุอิเล็กตรอนมีค่าลดลงและการกำบังของอิเล็กตรอนชั้นวงในมีค่าลดลง ซึ่งทำให้แรงดึงดูดระหว่างนิวเคลียสและอิเล็กตรอนมีค่ามาขึ้น อย่างไรก็ตามค่าที่เพิ่มขึ้นอาจไม่เพิ่มเท่าที่ควรจะเป็นในกรณีที่เมื่อปลดปล่อยอิเล็กตรอนตัวนั้นแล้วส่งผลให้เกิดการบรรจุเต็มหรือการบรรจุครึ่งในระดับชั้นพลังงาน เนื่องจากทั้งสองกรณีมีเสถียรภาพเป็นพิเศษ
กระบวนการสูญเสียอิเล็กตรอนนี้เกิดได้หลายครั้งสำหรับอะตอมหรือโมเลกุลที่มีหลายอิเล็กตรอน จึงเรียกเป็น IE1 IE2 IE3 ... ตามลำดับซึ่งก็คือค่าพลังงานในการดึงอิเล็กตรอนตัวที่ 1 2 3 ... นั่นเอง โดยอิเล็กตรอนตัวแรกย่อมจะหลุดออกไปง่ายกว่าอิเล็กตรอนลำดับถัดๆไปเสมอ พลังงานที่ต้องใช้จึงเพิ่มขึ้น
ค่าพลังงานไอออไนเซชันลำดับที่ 1 ของธาตุบางชนิด
การศึกษาแนวโน้มของค่าพลังงานไอออนไนเซชันของอะตอมหรือโมเลกุลนั้น สามารถช่วยนักวิทยาศาสตร์ทำความเข้าใจโครงสร้างของอิเล็กตรอนภายในอะตอมและโมเลกุลได้ดีขึ้น หากค่าพลังงานไอออไนเซชันเพิ่มขึ้นเป็นเส้นตรงอาจกล่าวได้ว่าอิเล็กตรอนเหล่านั้นมาจากชั้นอิเล็กตรอนเดียวกัน แต่ถ้าพบว่าค่าพลังงานไอออไนเซชันกระโดดไปก็หมายความว่าอิเล็กตรอนที่หลุดออกมานั้นอยู่ในชั้นที่ลึกเข้าไปอีก นอกจากนี้พลังงานไอออไนเซชันยังเป็นแนวโน้มตามตารางธาตุอย่างหนึ่งที่มีลักษณะชัดเจนและสามารถอธิบายได้โดยโครงสร้างการจัดเรียงอิเล็กตรอนของอะตอม
สัมพรรคภาพอิเล็กตรอน
สัมพรรคภาพอิเล็กตรอน (electron affinity : EA) หมายถึงพลังงานที่อะตอมในสถานะแก๊สคายออกเมื่ออะตอมได้รับอิเล็กตรอน 1 อิเล็กตรอน ซึ่งเขียนสมการแสดงการเปลี่ยนแปลงพลังงานได้ดังนี้
A(g) + e A(g) + DE
EA มีค่าเป็นลบ (–) เนื่องจากมีการคายพลังงานออกมา แสดงว่าอะตอมนั้นมีแนวโน้มที่จะรับอิเล็กตรอนเข้ามาได้ดี ความสามารถในการรับอิเล็กตรอนของแต่ละธาตุมีความแตกต่างกัน ดังตัวอย่าง
F(g) + e– F– (g) EA = –333 kJ/mol
O(g) + e– O– (g) EA = –142 kJ/mol
P(g) + e– P– (g) EA = –74 kJ/mol
จากตัวอย่างแสดงว่า มีแนวโน้มรับอิเล็กตรอนได้สูงกว่า และ ตามลำดับ เมื่ออะตอมของธาตุรับ 1 อิเล็กตรอนแล้ว การรับอิเล็กตรอนเพิ่มขึ้นอีก 1 อิเล็กตรอนจะรับได้ยากขึ้น ดังนั้นค่า EA จึงมีค่าสูงขึ้นจนเป็นบวกได้ เช่น
O(g) + e O2–(g) EA = 780 kJ/mol
โลหะมีแนวโน้มที่จะเสียอิเล็กตรอน โดยทั่วไปค่า EA ของโลหะจึงมีค่าเป็นลบน้อย ๆ ถึงค่าบวกน้อย ๆ ดังตาราง
ค่าสัมพรรคภาพอิเล็กตรอนของธาตุบางชนิด

เมื่อพิจารณาตามคาบพบว่า ค่าสัมพรรคภาพอิเล็กตรอนของธาตุอโลหะ (ยกเว้นหมู่ VIIA) มีค่ามากกว่าธาตุโลหะ แสดงว่าธาตุอโลหะมีแนวโน้มที่จะรับอิเล็กตรอนได้ดีกว่าธาตุโลหะ เมื่อพิจารณาโดยภาพรวมทั้งหมดจะพบว่าธาตุหมู่ VIIA มีค่าสัมพรรคภาพอิเล็กตรอนสูงที่สุดแสดงว่ามีแนวโน้มในการรับอิเล็กตรอนได้ดีกว่าธาตุหมู่อื่น ที่เป็นเช่นนี้อาจอธิบายได้ว่าการรับ 1 อิเล็กตรอนของธาตุในหมู่นี้จะทำให้อะตอมมีการจัดเรียงอิเล็กตรอนเหมือนธาตุหมู่ VIIA หรือแก๊สมีสกุลซึ่งมีความเสถียรมาก 

อิเล็กโทรเนกาวิตี

อิเล็กโทรเนกาติวิตี (electronegativity : EN) หมายถึงค่าที่แสดงความสามารถในการดึงดูดอิเล็กตรอนของอะตอมคู่ที่เกิดพันธะที่จะรวมกันเป็นโมเลกุล ธาตุที่มีค่าอิเล็กโทรเนกาติวิตีสูงจะมีความสามารถในการดึงดูดหรือรับอิเล็กตรอนได้ดี ได้แก่พวกอโลหะ ส่วนธาตุที่มีค่าอิเล็กโทรเนกาติวิตีต่ำจะดึงดูดหรือรับอิเล็กตรอนได้ไม่ดี ได้แก่พวกโลหะ เช่น โมเลกุลของ HCl เนื่องจาก Cl ดึงดูดอิเล็กตรอนได้ดีกว่า ดังนั้น Cl จึงมีค่าอิเล็กโทรเนกาติวิตีสูงกว่า แนวโน้มค่าอิเล็กโทรเนกาติวิตีของธาตุในตารางธาตุเป็นดังนี้
ค่าอิเล็กโทรเนกาติวิตีของธาตุบางชนิด 

เมื่อพิจารณาค่าอิเล็กโทรเนกาติวิตีของธาตุในคาบเดียวกันพบว่า มีแนวโน้มเพิ่มขึ้นตามเลขอะตอม เนื่องจากในคาบเดียวกันอะตอมของธาตุหมู่ IA มีขนาดใหญ่ที่สุด และหมู่ VIIA มีขนาดเล็กที่สุด ความสามารถในการดึงดูดอิเล็กตรอนตามคาบจึงเพิ่มขึ้นจากหมู่ IA ไปหมู่ VIIA ดังนั้นในคาบเดียวกันธาตุหมู่ IA จึงมีค่าอิเล็กโทรเนกาติวิตีต่ำที่สุด ส่วนธาตุหมู่ VIIA มีค่าอิเล็กโทรเนกาติวิตีสูงที่สุด ธาตุในหมู่เดียวกันมีแนวโน้มของค่าอิเล็กโทรเนกาติวิตีลดลงเมื่อเลขอะตอมเพิ่มขึ้น เนื่องจากขนาดของอะตอมที่เพิ่มขึ้นเป็นผลให้นิวเคลียสดึงดูดอิเล็กตรอนลดลง

ไม่มีความคิดเห็น:

แสดงความคิดเห็น